81 research outputs found

    High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: part 2, photon noise theory

    Full text link
    High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoretical photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (∼1×) EDI has ∼1.4× smaller noise than conventional, and at >10× boost, EDI has ∼1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. For three (or four) steps, we calculate a multiplicative bandwidth of 1.8:1 (2.3:1), sufficient to handle the visible band (400 to 700 nm, 1.8:1) and most of TripleSpec (2.6:1)

    Keck Planet Finder: Zerodur optical bench mechanical design

    Get PDF
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development for the W.M. Keck Observatory. To measure Doppler shifts to 0.5 m/s or better requires some of the optics be stable to 2 nm vertically and 2 nrad in pitch angle throughout a potentially one hour long observation. One traditional approach to this thermal stability problem is to build a metal bench and then control the spectrometer thermal environment to milli-Kelvin levels. An alternative approach used by KPF is to employ a Zerodur bench of extremely low coefficient of expansion (CTE), which relaxes the thermal stability required for the spectrometer assembly. Furthermore, Zerodur optics with integral mounts are used where possible, and are placed in contact with the bench through Zerodur shims. Springs are used to preload the optics and shims within pockets machined into the Zerodur bench. We will describe how this approach has been adapted for each optic (some of which are 450 mm high with a mass of 30 kg), and how the system meets our earthquake survival requirement of 0.92 g. This mounting scheme allows us to avoid using high-CTE metals or adhesives within the optic mounting system, and therefore fully exploit the high thermal stability of the Zerodur optical bench

    Far-Ultraviolet Cooling Features of the Antlia Supernova Remnant

    Full text link
    We present far-ultraviolet observations of the Antlia supernova remnant obtained with Far-ultraviolet IMaging Spectrograph (FIMS, also called SPEAR). The strongest lines observed are C IV 1548,1551 and C III 977. The C IV emission of this mixed-morphology supernova remnant shows a clumpy distribution, and the line intensity is nearly constant with radius. The C III 977 line, though too weak to be mapped over the whole remnant, is shown to vary radially. The line intensity peaks at about half the radius, and drops at the edge of the remnant. Both the clumpy distribution of C IV and the rise in the C IV to C III ratio towards the edge suggest that central emission is from evaporating cloudlets rather than thermal conduction in a more uniform, dense medium.Comment: 9 pages, 4 figures, will be published in ApJ December 1, 2007, v670n2 issue. see http://astro.snu.ac.kr/~jhshinn/ms.pd
    • …
    corecore